Copyright ? 2006-2024 高頓教育, All Rights Reserved. 網(wǎng)站地圖
你好哦,你這個答案算錯了啊,你驗證一下,相乘都不是等于E你可以用伴隨矩陣去求一下,還有這種四個塊都有元素的分塊矩陣不要只記公式,有點復(fù)雜
你把你的方法寫一下
不可以哈。有的不逆否
就是等差數(shù)列的求和公式可以寫成二次函數(shù)的形式看第2小點同學(xué)
同學(xué)這道題選項不嚴(yán)謹(jǐn),后面三個人任意一個不去可以推出趙不去,然后就推不出了
這個函數(shù)關(guān)于x不是奇函數(shù),也不是偶函數(shù),但是關(guān)于y是奇函數(shù),如何能判斷出他是奇函數(shù)呢
一個簡單句只有一個謂語,這個句子是3個簡單句組成的復(fù)合句,包括一個主句和一個從句,每個句子都有且只有一個謂語,所以這里的3個簡單句各自的謂語加起來共3個謂語。
[ ]表示 的取整函數(shù),比如[1.01]=1,[1.9]=1,[2.4]=2,用這個性質(zhì),你再算一下,分母不為0,求一下它的定義域
是修飾capital的,一般定語從句修飾的是靠近它的名詞或者靠近它的那個短句里的名詞
為什么x0,不是x<1...
為什么先取對數(shù)再求導(dǎo)算出來的結(jié)果是錯的?...
為什么改題用取對數(shù)求導(dǎo)算出來的結(jié)果和化為指數(shù)函數(shù)形式再求導(dǎo)得...
老師 為什么 分子趨向于0時 分母也趨向于0呢...
第一題的第二題和第五題,第二題,tanx的定義域怎么變成ta...
老師您好,我的問題是:考研數(shù)學(xué)講義高等數(shù)學(xué)基礎(chǔ)第73頁例4....
題目答案如圖一圖二(有tanx)。我的答案如圖三(沒寫tan...
老師,為什么y求二階導(dǎo)后就可以得出是分段函數(shù)? 不是很懂...
展開時為什么cosx是從0開始而ln(1+x)從1開始呢...
老師,看我紅筆寫的,有問題嗎,我咋感覺沒有問題,但是答案對不...
2024年江西財經(jīng)大學(xué)MBA招生全日制和非全日制研究生,有綜合管理MBA和數(shù)字化管理MBA兩個研究方向,上課方式分別為全日制綜合管理MBA:工作日;非全日制綜合管理MBA:周末授課/夜間授課/集中授課;非全日制數(shù)字化管理MBA:每月集中一次授課。
在考研過程中,了解所報考專業(yè)的考試科目和考試大綱是非常重要的一步。那么,考研專業(yè)課大綱可以在哪里查看呢?考研專業(yè)課大綱可以通過院校官方網(wǎng)站、教育部門網(wǎng)站、考研輔導(dǎo)書籍、網(wǎng)絡(luò)資源等方式查看。為了大家更好的了解,小編為大家整理了考研專業(yè)課大綱可以在哪里查看的詳細(xì)內(nèi)容,一起來看看吧!
2023年北京初級會計證書領(lǐng)取大約會在考試成績公布后的2-3個月開始陸續(xù)發(fā)放。
河北大學(xué)憲法學(xué)與行政法學(xué)專業(yè)考研能調(diào)劑嗎?調(diào)劑多少人?2023河北大學(xué)憲法學(xué)與行政法學(xué)考研調(diào)劑6人,具體內(nèi)容如下,供各位考生參考!
2024陜西師范大學(xué)學(xué)科英語考研官方參考書目公布啦!2024陜西師范大學(xué)學(xué)科英語考研科目有四門:①101思想政治理論②204英語(二)③333教育綜合④908專業(yè)基礎(chǔ)。政治和英語二是公共課,屬于全國統(tǒng)考;333+908是專業(yè)課,由學(xué)校自主命題。具體詳情,快隨小熊學(xué)姐一起來看看吧!
教師回復(fù): 是這么理解的:正項級數(shù)收斂就意味著它們加起來是等于一個常數(shù)的,而偶(奇)數(shù)項只是正項級數(shù)的一部分,那么它們加起來肯定也是一個常數(shù),所以是收斂的。嚴(yán)格的證明需要按照正項級數(shù)收斂的定義,用單調(diào)有界定理來證明。
教師回復(fù): 這里應(yīng)該套用的是ln1+x的公式,因為x趨于0的,然后可以把-x帶入
教師回復(fù): 可以按照這個來理解因為AB=0,所以矩陣B的列向量都是線性方程組AX=0的解;則矩陣B的列向量組的秩,不大于方程組AX=0的基礎(chǔ)解系的個數(shù),也就是說矩陣B的列向量組可以由AX=0 的基礎(chǔ)解系線性表示,所以R(B) <= n-R(A),故R(A)+R(B)小于等于n。
教師回復(fù): 這是個感嘆句,使用了倒裝,順過來說是 a day makes a difference. 某一天產(chǎn)生了重要的作用/ 某一天發(fā)生了一個變化。 用感嘆語氣,則是 某一天產(chǎn)生了多么大變化?。。骋惶旌推綍r非常不一樣);翻譯則調(diào)整表達(dá)為: 多么與眾不同的一天?。?多么特別的一天??!
教師回復(fù): x趨于0,cosx的極限是1,所以ln(cosx)=ln(1-1+cosx),等價無窮小為-1+cosx,也就是等價無窮小為-1/2 x^2
教師回復(fù): 題里面如果讓你求得一個正交矩陣的話,就一定要正交化和單位化如果求正交矩陣,所求的特征向量天然正交,就不需要正交化只單位化就可以了如果題目只要求一個可逆矩陣的話,就不需要正交化和單位化
教師回復(fù): 是可積的,因為這個是有界震蕩
教師回復(fù): 矩陣的特征值各不相同 , 則一定可以對角化 因此 , 此時矩陣有多少個非 0 特征值 , 秩就等于多少